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Abstract—Pelvic and hip fractures offer considerable public
health risks with high morbidity and mortality rates. Because
of the complicated bone structure of the pelvic bone region,
detecting fractures is difficult. Though X-ray imaging is
routinely utilised for detecting fractures, manual fracture
diagnosis is prone to inaccuracies. This paper proposes the
use of deep learning algorithms for automated segmentation of
the pelvic bone region in X-ray images. In our work, we have
investigated U-Net based pelvic area segmentation models with
various convolutional neural network (CNN) backbones. The
DenseNet121-based U-Net design emerged as the most optimal
model, establishing a compromise between performance and
computational efficiency. Although it had a modest loss in IoU
and F1 scores when compared to InceptionNetV3, it had a
remarkable 59.44% reduction in the number of parameters.

Index Terms—pelvic bone, segmentation, deep learning, x-ray

I. INTRODUCTION

Pelvic and hip fractures are a major public health concern
around the world, posing a substantial risk of morbidity and
mortality [1], [2]. Acting as a crucial link between the lower
extremities and the spine, the pelvis encompasses an intricate
arrangement of bones, including the pelvic ring and femur
bones. Detecting fractures in this region can prove challenging
due to the complex architecture of the pelvic bones. Research
conducted by Balogh et al. [3] reveals that the occurrence of
pelvic fractures amounts to 23 per 100,000 individuals. Dis-
turbingly, patients afflicted with severe pelvic fractures face a
mortality rate of 32%, according to the American Association
for the Surgery of Trauma [4]. Furthermore, hip fractures have
become a prevailing medical issue among the elderly popula-
tion, with annual reports of approximately 250,000 cases in the
United States alone [5]. Detecting fractures within the pelvic
ring at an early stage and employing effective medical inter-
ventions can significantly reduce the mortality rate for patients
[6], [7]. Consequently, a comprehensive diagnostic approach
becomes imperative for identifying fractures within the pelvic
ring, necessitating the exploration of various methods.

In the medical setting, X-ray imaging is used to assess the
pelvic bone region in cases of pelvic injuries. Conventional
radiography, however, may not always reveal hip fractures
[8]. So, healthcare professionals frequently use Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI) to
gain a more detailed understanding of the pelvic bone region
[9]. Nonetheless, while CT imaging provides a more thorough
view of the pelvis, X-ray images are frequently sufficient for
an accurate diagnosis in the majority of pelvic fracture patients
[10]. CT scans are impractical in cases of severe injuries where
rapid medical intervention and stabilisation are necessary due
to their time-consuming nature. In such crucial situations,
X-ray imaging becomes the preferred modality. Despite the
benefits of X-ray imaging, such as its speed, availability,
cost-effectiveness, and convenience of use, manually detecting
pelvic fractures remains challenging and is susceptible to false-
negative detection. As a result, the need for automated methods
to address this issue becomes evident.

Deep learning has recently been found to be useful in
the field of medical image diagnosis [11]. Olczak et al.
[12] demonstrated the diagnostic performance of their deep
learning model on X-ray radiographs, exhibiting comparable
accuracy to orthopaedic doctors. Numerous studies support the
hypothesis that deep learning systems can achieve high accu-
racy in fracture detection from radiographs [13]–[15]. Further-
more, deep learning has been effectively employed in a variety
of diagnostic tasks, including kidney cancer segmentation from
CT images [16], brain tumour segmentation from MRI [17],
and retina image analysis [18]. Likewise, the application of
such techniques is promising in pelvic fracture detection.

Recently, several studies have attempted to use deep
learning to detect fractures in the pelvic bone region
from X-ray images with great success. Even though some
researchers conducted studies that yielded high accuracies
in detecting hip fractures in the pelvic bone region [5],
[19]–[21], considerably limited research has been done to
detect fractures in the pelvic bone region [22]. Cheng et al.
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[23] initially developed a system that could detect a range of
trauma-related fractures from the X-ray image of the pelvic
bone region using PelvicXNet. It was able to detect the
location of both pelvic and hip fractures from plain pelvic
radiographs and achieve state-of-the-art performance.

However, the performance obtained through the current
approaches is still not suitable for implementation. While
performing fracture detection on human wrist radiographs,
the deep learning-based approach by Kim et al. [24] also
had similar limitations. To overcome this, Kalmet et al. [25]
proposed segmenting the relevant region of interest before
fracture detection, which could enhance the results obtained
by Kim et al. by eliminating unnecessary data from the pixels
outside the area of interest. Taking this into consideration,
it is evident that the proposed models for fracture detection
in the pelvic bone region could be further optimised if the
pelvic bone region is extracted before the model attempts to
detect fractures, which has the potential to reduce the impact
of noise and false positive results.

Therefore, the objective of this study is to automate the
segmentation of the pelvic bone region from X-ray images
using deep learning. U-Net based architectures have recently
emerged as a highly successful approach for biomedical image
segmentation [26]. Furthermore, cutting-edge deep learning
models pre-trained on non-medical images have demonstrated
their efficacy in extracting complicated features from medical
images with significant performance. Hence, this study aims
to contribute to the utilisation of deep learning and investigate
creative methodologies for automated segmentation of the
pelvic bone region using an UNet based system with different
variations of CNN-based backbones.

In this paper, we have discussed the development of the
Pelvic Bone Region Segmentation (PBRS) system to enable
the segmentation of the pelvic bone region. The dataset used
for PBRS has been described in Sec. II. Sec. III discusses
the development of the PRS model with appropriate settings
and the approach to evaluate the performance of the proposed
method. Following that, in Sec. IV, we present and discuss
the findings of our studies. Finally, Sec. V summarises
the findings and offers future study areas in the automated
segmentation of the pelvic bone region.

II. DATASET

For our segmentation task, we used 100 pelvic X-ray
images from the PXR150 open-source dataset [25]. It
contained a total of 150 X-ray images from the pelvic and
hip regions. X-ray images from 1888 patients at first. These
X-rays comprised 381 instances of only hip fractures, 135
instances of only pelvic fractures, 1334 instances without any
acute findings, and 390 mixed instances. 150 X-rays were
randomly selected from them to make the PXR150 dataset.
The images were grayscale and in PNG format, with pixel
values ranging from 0 to 255.

However, these images did not contain any masks for the
pelvic bone regions, which are necessary for PBRS. Hence,
100 of these X-ray images were chosen randomly from the

150 X-ray images of the PXR150 dataset, comprising a
mixture of instances with only hip fractures and only pelvic
fractures and without any acute findings, to annotate and
preprocess for training our PBRS model.

A. Annotation

Since the dataset of radiographs does not have any labels or
annotations, manual annotation is necessary for segmentation.
For this, the Medical Imaging Interaction Toolkit (MITK) [27]
has been used to annotate the images. Since the dataset has
been prepared for the segmentation task, the annotations, in
this case, are the masks for the pelvic bone region. The mask
is a binary image with pixel values of 1 or 0 corresponding to
the target region or background. In our case, pixel values of
1 denote the pelvic bone region in an image. The masks are
stored as Portable Network Graphics (PNG) files, which can
be used for our use case after further processing. A sample of
the X-ray image along with its mask is shown in Fig. 1.

(a) (b)

Fig. 1: Sample image of Pelvic bone X-ray dataset: (a) original
X-ray and (b) PBRS mask.

B. Data Pre-processing

One of the prime considerations for the pre-processing of
the data was the varying resolution of X-ray images in the
dataset. So, the images have been resized to 224 x 224 for
the convenience of training and to maintain constant shape.
The 100 X-ray images and their corresponding masks are then
separated into a train, validation and test dataset of 70, 10 and
20 images respectively. To prevent overfitting the model during
training, we use an image augmentation strategy to increase
the size of our training dataset. This method includes randomly
applying horizontal flipping, scaling, rotating, shifting, adding
Gaussian noise, and shearing, as well as random changes in
brightness, contrast, and saturation.

III. SEGMENTATION MODEL

After the dataset has been prepared for training, we
have discussed the development and implementation of the
segmentation model for extracting pelvic bone region from
X-ray images. Our overall approach has been illustrated
in Fig. 2. To develop an effective PBRS model, we have
implemented a U-Net based approach followed by its
effectiveness in biomedical image segmentation [26].



Fig. 2: Overview of the method

A. DCNN Backbones

U-Net is primarily a Deep Convolutional Neural Network
(DCNN)-based architecture. With appropriate model settings,
our work has explored a wide range of backbone architectures
in implementing U-Net for PBRS. Our implementation of
the U-Net architecture comprises several robust and popular
DCNN architectures, namely: InceptionV3 [28], VGG16 [29],
MobileNetV2 [30], DenseNet121 [31], ResNet50 [32], and
EfficientNetB3 [33], as its backbone DCNN layers.

1) Inceptionv3: This neural network model was designed
for high computational efficiency. To achieve this, its
architecture uses both great height and great width. This
model uses a module known as the Inception module, where
there are parallel convolutional layers with filters of different
sizes. The smaller filters help to extract smaller features in the
image, and the larger filters help to extract larger features in
the image. Besides, the model also uses max-pooling layers,
which reduce the dimensions of the feature maps, reducing
the computational cost further.

2) Resnet50: Resnet50 solves the problem of vanishing gra-
dients in very deep CNNs, thereby increasing their accuracy.
This model is made up of residual blocks from which the
network can learn residual functions, which helps optimise
the network. The residual blocks use ”skip connections,” where
one or more layers are skipped and information from an earlier
layer is added to a later layer.

3) VGG16: VGG16 is a simple deep CNN made up of
blocks consisting of multiple 3 x 3 convolutional layers, with
each block, followed by a max pool layer. It uses multiple 3
x 3 convolutional layers instead of a single larger filter layer
to reduce the number of parameters needed. The number of
filters (in a convolutional layer) in each block increases by a
factor of 2 after each max pool layer until it reaches 512. The
input is a fixed-size 224 x 224 RGB image. In this image,
the mean RGB value, calculated from the entire training set,
is subtracted from each pixel. This is done so that the pixel
values centre around zero, which helps with convergence,
thereby improving the model’s performance.

4) MobileNetV2: The MobileNetV2 model was built to pro-
vide high accuracy on computer vision tasks with limited com-
putational resources on mobile devices and embedded systems.
It uses a technique called depth-wise separable convolution.

Here, a separate filter is applied to all input channels instead
of a single filter as in the standard convolution operation. A 1
x 1 filter is then applied to combine the output channels of this
operation to produce a final set of output channels. Using this
technique instead of standard convolution reduces the number
of parameters drastically while only reducing the accuracy
by a minuscule amount. Moreover, the model makes use of
two hyperparameters, the width multiplier and the resolution
multiplier, to decrease the computational cost further as needed
with a small accuracy and latency trade-off. The model also
uses inverted residual blocks, which improves accuracy and
reduces the computational cost further.

5) DenseNet121: DenseNet is made up of dense blocks
consisting of several convolutional layers, where each con-
volutional layer is connected in a feed-forward style. Here,
each convolutional layer uses the feature maps of the previous
layers as inputs, and the layer’s feature maps are fed forward
as inputs to the succeeding layers. In traditional deep CNN, the
features learned in earlier layers may not get fully passed to the
later layers. The feed-forward architecture in DenseNet solves
this problem and prevents learned features from getting lost.
Besides, the DenseNet architecture solves the vanishing gra-
dient problem and reduces the number of parameters as well.

6) EfficientNetB3: Scaling the depth, width, and resolution
of a CNN increases the accuracy until a certain point, after
which the accuracy starts to deteriorate due to the vanishing
gradient problem. To solve this problem, Tan et al. [33] pro-
posed an efficient way of scaling a CNN by scaling its depth,
width, and image resolution with a constant ratio. However,
the results of such scaling are dependent upon the baseline
network it is applied to; therefore, Tan et al. [33] used neural
architecture search [34] to develop a set of models known as
EfficientNets. EfficientNet-B0 can be scaled up several times
until EfficientNet-B7, with each successive model having more
parameters and giving a higher accuracy. For our purposes, we
have found EfficientNet-B3 to be the perfect fit.

B. Model Settings

The pre-trained weights of these DCNNs available
through ImageNet [35] have been used for more efficient
optimisation during training. Incorporating these backbone
architectures into the U-Net architecture, we have trained the



six segmentation models. Adam optimiser has been used with
a learning rate of 0.0001 to help our models converge to the
minima and a combination of binary focal loss with dice loss
has been used as the loss function. Intersection over union
(IoU) and F1 score metrics were monitored to identify the
optimum model. The models were trained for 100 epochs
with a batch size of 10 and the best weights were saved
based on their minimum validation loss.

C. Evaluation

To evaluate model performance, we used a separate test set
of 20 samples not used during training or validation. We mea-
sured the mean IoU-score, and mean F1 score for each model.
The Intersection over Union (IoU) score gives a measure of the
overlap between two sets of data. It is calculated by dividing
the area of intersection between the predicted mask and the
ground truth mask by the area of union between them using
equation (1). The score ranges from 0 to 1, with 0 indicating
no overlap and 1 indicating perfect overlap. The F1 score
is obtained by multiplying the area of overlap by two and
dividing the result by the combined area of the two images as
per equation (2). The resulting score ranges from 0 to 1, where
a higher score indicates a better performance of the model.

IoU =
Area of Overlap
Area of Union

(1)

F1 =
2× Area of Overlap

Total area of two images
(2)

IV. RESULTS AND DISCUSSION

In this section, we discuss the significance of the results
obtained by the six different variations of the U-Net model
and the determination of the most optimum model for PBRS.
The training and validation performance of the models has
been evaluated after each epoch in terms of both IoU and F1
scores as illustrated in Fig. 5. For all models, even though
a gap between the training and validation curves is noticed
during the initial few epochs of training, the models eventually
demonstrated convergence between the training and validation
curves after a specific number of epochs. We subsequently
selected the models with the minimum validation loss for each
architecture to be the optimum models. Moreover, training and
validation IoU and F1 scores for these models along with their
total number of parameters have been shown in Table. I.

Now, these optimum versions of the PBRS models for each
of the six backbone architectures have been further evalu-
ated on test datasets comprising 20 samples. This evaluation

TABLE I: IoU and F1 scores for different CNN backbones.

Backbone Total Training Validation
Parameters IoU F1 IoU F1

InceptionV3 [28] 29.93 M 0.940 0.969 0.926 0.961
VGG16 [29] 23.75 M 0.884 0.938 0.885 0.938
ResNet50 [32] 32.56 M 0.929 0.963 0.915 0.955
DenseNet121 [31] 12.14 M 0.931 0.964 0.909 0.950
EfficientNetB3 [33] 17.87 M 0.934 0.966 0.925 0.960
MobileNetV2 [30] 8.47 M 0.861 0.925 0.821 0.901

Fig. 3: Performance of U-Net on the test dataset.

demonstrates a significantly high performance of our proposed
method in terms of mean IoU and F1 scores which have
been visualised in Fig. 3. It is evident from the plot that
the InceptionV3-based segmentation model achieved the best
results across all evaluation metrics. Following InceptionV3,
EfficientNetB3, DenseNet121, and ResNet50 exhibited com-
parable performances, with negligible discrepancies among
their respective scores. A sample of such accurate segmen-
tation of the pelvic bone region and its comparison with the
ground truth has been shown in Fig. 4a.

Again, in terms of the number of parameters, the U-Net
architectures based on MobileNetV2, DenseNet121 and
EfficientNetB3 have the least number of parameters hence
lightweight. Our proposed model utilises fewer parameters
and is designed specifically for mobile devices with limited
computational resources. The simplified and lightweight
architecture of MobileNetV2 compromises its ability to
capture complex details in the images, resulting in reduced
accuracy. On the contrary, the InceptionV3-based PBRS
model is the best-performing variation of U-Net which
employs more advanced layer structures, such as Inception
modules, residual blocks, and dense blocks, enabling them to
effectively detect intricate features in the images and requires
high computational resources to perform due to its higher
number of parameters compared to the other models.

(a)

(b)

Fig. 4: Sample of PBRS Predictions: (a) good and (b) bad



(a) (b)

(c) (d)

(e) (f)

Fig. 5: Training and Validation Performance per epoch: (a) InceptionV3, (b) VGG16, (c) ResNet50, (d) DenseNet121, (e)
EfficientNetB3 and (b) MobileNetV2.

Therefore, given the trade-off between performance and
computational efficiency, the DenseNet121 architecture is
the most optimal variant of our proposed PBRS model.
This model demonstrates exceptional performance while
maintaining a lightweight structure. Although it exhibits a
slight reduction of 0.5% and 0.2% in IoU and F1 scores,
respectively, compared to InceptionNetV3, this compromise
is justified by the significant advantage of a 59.44% reduction
in the number of parameters required by DenseNet121.
However, it is important to note that the hazy nature of X-ray

images presents challenges, resulting in instances where the
segmentation may be noisy, as shown in Fig. 4b. As a result,
additional improvements can be investigated to address these
limitations and improve segmentation accuracy.

V. CONCLUSION

In conclusion, this study utilises deep learning to provide
an automated approach for segmenting the pelvic bone region
from X-ray pictures. The DenseNet121 architecture emerges
as the most ideal option, providing exceptional performance



while being lightweight. Despite a minimal decrease in
performance scores when compared to InceptionNetV3, the
trade-off is justified by a substantial reduction in the number
of parameters. The proposed method, which provides accurate
segmentation results, meets the demand for automated fracture
detection in the pelvic bone region. However, difficulties such
as the haziness of images from X-rays continue to have an
impact on segmentation accuracy, allowing an opportunity
for further advancement. Overall, this study demonstrates
the utility of deep learning in the identification of pelvic
fractures and provides useful insights for enhancing medical
radiographic image analysis.
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[15] F. Hardalaç, F. Uysal, O. Peker, M. Çiçeklidağ, T. Tolunay, N. Tokgöz,
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