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Abstract—Detecting and classifying violence is crucial for
public safety and addressing societal violence. DL models have
greatly improved the automation of violence detection systems
by effectively capturing intricate visual patterns. However, the
quality and diversity of the training data greatly impact the
effectiveness of these models. Existing datasets may be biased
towards specific situations, limiting their practical use. To address
this limitation, we introduce the Movie Clip (MC) dataset to
enhance the generalisability of Automated Violence Detection and
Classification (AVDC) systems. The MC dataset encompasses a
broad spectrum of near-real-world violent actions, incorporating
diverse demographics, environmental circumstances, and cultural
elements extracted from movies. Consequently, it accurately
reflects the complexity and diversity of real-world violent
scenarios. The potential of the new dataset is investigated against
its existing counterparts, like Hockey Fight (HF) and AIRTLab
datasets. These datasets are used to train the ConvLSTM models
based on the VGG16 and VGG19 architectures. The proposed
dataset significantly improves AVDC model generalisation,
outperforming the generalisability of current datasets, thereby
advancing violence detection and facilitating the development of
more robust and efficient AVDC systems.

Index Terms—movie clip, violence detection, dataset, ConvL-
STM, CNN, LSTM

I. INTRODUCTION

Violence is a significant problem in modern society, posing
threats to well-being, public safety, and social cohesion [1],
[2]. It manifests in various forms, such as street crimes,
domestic violence, cyberbullying, and extremism. Detecting
and preventing violence is crucial for governments, law en-
forcement, and communities worldwide. However, continuous
monitoring is challenging due to the potential for human
error. Thus, the development of a vision-based Automated
Violence Detection and Classification (AVDC) system holds
great importance [3].

For the AVDC systems, deep learning (DL) based pattern
recognition has demonstrated great promise. DL, a subfield of
machine learning, has revolutionised computer vision through

the utilisation of deep neural networks (DNNs) to learn
hierarchical representations directly from input data [4]. This
paradigm shift has led to significant progress in various
computer vision tasks, enhancing accuracy, efficiency, and
versatility. Convolutional neural networks (CNNs) and end-
to-end learning have played significant roles in transforming
tasks such as image classification, object detection, semantic
segmentation, and generative models [5].

Characterizing human behaviour for violent activities has
always been challenging in computer vision research. De-
spite notable advancements, there are still key limitations in
this field, including optical flow discontinuities [6], camera
aperture problems, and challenges related to illumination and
feature tracking initialisation [7]. To address these challenges,
LSTM-based dual-stream network [8] employed a late-fusion
approach, combining appearance, motion, and audio features,
and achieved state-of-the-art performance in that year. Later,
the classic action recognition of temporal segment was utilised
in the FightNet model [9] to detect complex visual violence
interactions. Some computationally efficient approach were
also taken such as Vijeikis et al. [10] utilised MobileNetV2
along with LSTM network for violence detection by extracting
temporal features.

Subsequently, ConvNet, a video content understanding ap-
proach that considers spatiotemporal features, has been widely
used in violent video detection [11], [12]. Although these
models have demonstrated promising results, the effectiveness
of these DL models heavily relies on the quality and diversity
of the training datasets. Therefore, it is crucial to train models
with datasets that can help the models learn features that are
general for the actions associated with violent scenes which
make the trained model capable of detecting a wider range of
violent scenes

This paper presents a new dataset and justifies its effective-
ness in improving the generalisability of AVDC systems in
detecting a wide range of violent activities. Furthermore, the
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potential of this dataset is investigated in comparison to its
existing counterpart. Existing AVDC datasets, such as Hockey
Fight (HF) [13] and AIRTLab [14], suffer from significant bias
towards specific contexts and situations. Consequently, models
trained on these datasets may struggle to generalize to unseen
instances of violence, posing challenges for the practical im-
plementation of DL model-based violence detection systems.

To address the critical need for a diverse AVDC dataset,
we have developed a Movie Clip (MC) dataset with a com-
prehensive collection of visual data samples extracted from
movie clips (Sec. II). Our dataset incorporates a wide range
of near-real-world violent activities, aiming to overcome the
limitations of existing datasets (Sec. III). By ensuring diversity
across various dimensions, such as the types of violence,
environmental contexts, demographics, and cultural factors,
the new dataset demonstrates greater effectiveness for the DL-
based AVDC systems capturing the complex and heterogenous
real-world violent activities (Sec. IV).

II. DEVELOPMENT OF A NEW DATASET

In this section, we will evaluate the strengths and limitations
of the current AVDC datasets. Our analysis will primarily
concentrate on two extensively utilised datasets: HF [13]
and AIRTLab [14]. Furthermore, we will introduce a new
dataset that has been developed to address the limitations
of the existing datasets. Throughout our assessment, we
will specifically emphasize the fundamental attributes of the
sampled video frames, volumes, scene diversity, and other
technical considerations that are critical for the development
of a comprehensive dataset.

A. Existing Datasets

1) HF Dataset: The HF dataset, developed by Nievas et
al. [13], contains 1,000 clips from National Hockey League
(NHL) games, representing both violent and non-violent ac-
tions. It is a valuable resource for AVDC tasks. Each clip
consists of 41 to 50 frames with a resolution of 720 × 576
pixels. The dataset has undergone manual annotation to clas-
sify the clips into two categories: violent and non-fight. The
dataset includes 500 clips depicting violent scenes, specifically
fighting scenes in NHL games, and 500 clips depicting non-
violent scenes, primarily showcasing general gameplay. Fig. 1a
provides samples extracted from the HF dataset. Notably, all
videos in this dataset have a standardised duration of approxi-
mately two seconds and maintain consistent frame sizes. They
also exhibit similar backgrounds and background motions, en-
suring a coherent visual context throughout the entire dataset.

2) AIRTLab dataset: The AIRTLab dataset [14] was
created specifically to evaluate the robustness of AVDC
models in the presence of false positives in non-violent video
clips with rapid movements [15]. It consists of 350 video
files with an average duration of 5.63 seconds. The videos
have a resolution of 1920 × 1080 pixels and a frame rate of
30 frames per second, using the H.264 codec. The dataset is
organised into two directories: ‘non-violent’ and ‘violent’ with
different camera perspectives capturing the same activities.

There are 120 instances of non-violent behaviour, and 230
instances of violent behaviour. These scenes were primarily
performed by actors to simulate both violent and non-violent
interactions. To create the dataset, actors were recorded using
two cameras, resulting in 2–4 clips for each violent and
non-violent action. Initially, the actors performed various
violent actions such as kicking, punching, slapping, beating,
and simulated gunshots. Subsequently, non-violent actions
like high-fives and hugging were enacted. Fig. 1b displays
sample clips from the AIRTLab dataset.

B. Scope of Development

To develop a new dataset for AVDC models, it is important
to consider several factors. Firstly, a diverse representation of
violent scenes is crucial, encompassing various types of violent
behaviours, environments, and contexts. This diversity enables
the model to learn robust features and generalize effectively
to real-world scenarios. Secondly, the dataset should include
an ample number of non-violent scenes to achieve a balanced
training set and prevent bias towards violence. This ensures
the model can effectively discriminate between violent and
non-violent behaviours.

Furthermore, manual annotation of the dataset is essential to
provide accurate and consistent ground truth labels for training
and evaluation. The annotation process should be meticulous
to ensure reliable evaluation metrics. Additionally, factors
such as video quality, resolution, and frame rate need to be
considered to ensure compatibility with different surveillance
systems and video sources.

However, existing AVDC datasets do not encompass general
application scenarios. As discussed above in this section, the
HF and AIRTLab datasets address specific features of violent
scenes but are insufficient for developing a generalised AVDC
system. To overcome this limitation of the existing dataset,
we aimed to develop a new dataset containing a wide range
of violent scenes to facilitate the development of a generalised
AVDC system suitable for real-world violence detection.

C. The Proposed MC Dataset

We have developed an extensive dataset consisting of 1,377
video clips extracted from various movies, wherein near real-
world situations are portrayed. Each clip in the dataset adheres
to a standardised resolution of 1920× 1080 pixels and main-
tains a frame rate of 24 frames per second. The duration of
these clips varies, ranging between 97 and 172 frames. To
ensure clarity and organisation, we have divided the dataset
into two distinct categories: violent and non-violent. Clips
depicting violence are labelled and included in the violent
category, while those without violence are assigned to the non-
violent category. Fig. 1c displays selected samples from the
dataset, providing a visual representation.

Our dataset comprises a total of 913 violent and 464
non-violent movie clips. For a comprehensive overview,
we present the details of all three datasets in Table I,
which demonstrates the novelty of our approach to creating



the proposed dataset. The MC dataset can be accessed at
https://figshare.com/articles/dataset/23643555.

III. EXPERIMENT SETTINGS

In this section, we outline the experimental settings used
to assess and analyse the performance of DL-based AVDC
models. Our evaluation focuses on the proposed MC dataset, as
well as the HF [13] and the AIRTLab [14] datasets. We provide
technical details regarding the preprocessing of the datasets,
the architecture of the ConvLSTM-based AVDC models, their
hyperparameters, and the method used to measure the diversity
of the MC dataset against the HF and AIRTLab datasets.

A. Dataset Pre-Processing

To ensure uniformity and facilitate analysis, we adjusted
the resolution of the video clips in our datasets. The original
clips exhibited varying resolutions and aspect ratios across
the datasets, necessitating even resizing while preserving the
format. We applied appropriate padding techniques to ensure
that all clips maintained a consistent aspect ratio of 1:1. After
preprocessing, the dataset was divided into three distinct sets:
training, validation, and testing datasets.

For the model development phase, 70% of the clips were
allocated for training the AVDC models, while 15% were
reserved for validation purposes. The remaining 15% of the
video clips were exclusively used to assess the performance
and generalisation abilities of the trained models. We aimed to
minimize biases, achieve a balanced representation of violent
and non-violent scenes, and adhere to conventional practices
for training and testing AVDC models. These procedures were
employed during the dataset preparation and processing stages
to ensure adherence to established standards.

B. AVDC Models

In this study, two DL models have been chosen to demon-
strate the performance of our dataset. These models are
transfer learning-based variations of ConvLSTM models [15].
ConvLSTM is a variant of LSTM that incorporates convolu-
tional processes while transitioning between states. Multiple
ConvLSTMs can be used to create an encoding-prediction
framework that is effective in obtaining spatiotemporal prop-
erties.

Traditionally, the input data for LSTM is one-dimensional;
spatial sequence data like video, satellite, and radar image
datasets are not appropriate. Hence, ConvLSTM was de-
signed with 3D input data where both spatial and temporal
features are considered. As a result of the deployment of
the convolutional framework, all inputs Xt, cell states Ct,
hidden states Ht, and gates (It, Ft, Ot) are three-dimensional
tensors ∈ Rb×b×k, the initial two dimensions capture spatial
characteristics, whereas the final dimension acquires spectral
depiction of features. subsequently the temporal dependencies
were developed via generating time series for H and C as
illustrated in Fig.2. The input Xt and past states Ct−1, Ht−1

are inputs to the ConvLSTM for predicting the future states

Ct, Ht. Equation (1) summarizes the essential equations of
the ConvLSTM according to [16].

It = σ (WXZ ∗Xt +WHI ∗Ht−1 +WCI ◦ Ct−1 + bI)

Ft = σ (WXF ∗Xt +WHF ∗Ht−1 +WCF ◦ Ct−1 + bF )

Ct = Ft ◦ Ct−1 + It ◦ tanh (WXC ∗Xt +WHC ∗Ht−1 + bC)

Ot = σ (WXO ∗Xt +WHO ∗Ht−1 +WCO ◦ Ct + b0)

Ht = Ot ◦ tanh (Ct)
(1)

Where W, b, σ, ∗ and ◦ represents coefficient matrix, bias
vector, sigmoid function, convolution operation and Hadamard
product respectively.

For initial feature extraction, we have separately considered
VGG-16 and VGG-19 [17]-based convolutional backbones.
VGG-16 and VGG-19 are CNN architectures with 16 and 19
convolutional layers, respectively, which help the model under-
stand the spatial features of the data. These spatial features are
then used to train the LSTM layers to recognise the temporal
pattern across these spatial features and enable the recognition
of violent scenes with appropriate hyper-parameters.

C. Hyper-parameter

To ensure robust training, we employed 100 epochs for
both the VGG-16 and VGG-19-based ConvLSTM models.
Each epoch represents a complete iteration through the entire
dataset. We used a batch size of 24, which facilitated efficient
parallel processing and gradient updates during training. These
choices strike a balance between computational efficiency and
effective model learning.

For the output layer activation, we utilised the sigmoid
function. This activation function is well-suited for binary clas-
sification tasks, as it enables effective discrimination between
violent and non-violent classes. By employing the sigmoid
activation, we encouraged the models to output a probability
value that indicates the likelihood of a violent scene.

To optimize the models’ performance during training, we
employed the Adam optimizer, known for its effectiveness in
optimizing deep neural networks. We initialised the learning
rate as 1e-5, allowing the model to gradually update its
parameters to minimize the loss function and converge to an
optimal solution.

To measure the discrepancy between predicted and actual
labels, we utilised the binary cross-entropy loss function.
This loss function is commonly used in binary classification
scenarios, aiding the models in learning and adjusting their pa-
rameters accordingly. By minimizing the binary cross-entropy,
we encouraged the models to make accurate predictions and
classify violent and non-violent scenes more effectively.

Furthermore, we note the parameter counts for our mod-
els. The VGG-16 + ConvLSTM model comprises a total
of 19,598,401 parameters, while the VGG-19 + ConvLSTM
model has 20,024,384 parameters. These parameters capture
the models’ weights and biases, enabling them to learn and
extract relevant features from the input data, thus enhancing
their prediction accuracy.

https://figshare.com/articles/dataset/23643555


TABLE I: Overview of the HF, AIRTLab, and MC datasets.

Criteria HF dataset AIRTLab MC dataset
Resolution 720× 576 1920× 1080 1920× 1080

Size (clips) 1000 350 1377
FPS 41-50 30 24
Violent scenes 500 230 913
Non-violent scenes 500 120 464
Duration (approx) 2 sec 5.63 sec 5-7 sec
Source NHL games Staged acting Movies

Considerations Fighting in Sports
Dummy fighting
Weapon props

Fighting, Aggression, Blood, Weapons,
Murder and other physical altercations

(a)

(b)

(c)

Fig. 1: Sample frames of different datasets: (a) HF, (b) AIRTLab, and (c) MC (proposed).

D. Evaluation Metrics

The performance evaluation of the AVDC system to de-
termine the effect of the proposed MC dataset in improving
its generalizability involved training and validating the AVDC
models on three distinct datasets: MC, AIRTLab, and HF. To
identify the optimal models for AVDC, we considered the
trade-off between training and validation loss values. Subse-
quently, each of these AVDC models underwent evaluation
using separate test datasets from all three aforementioned
datasets. The schematic representation of this process is de-
picted in Fig. 3. The subsequent sections present and assess the
performance of the models on each test dataset, using the F1
score and area under the curve (AUC) as evaluation metrics.

However, while these metrics aid in understanding a model’s
performance on a specific dataset, they do not capture its
ability to generalize across different datasets. To address this,

we introduce a cross-dataset diversity factor (δX ), defined by
Equation (2), where α denotes the accuracy of the model
on the test dataset derived from the same dataset as the
training dataset (but not used in training), and α′ represents
the accuracy of the model on the test dataset obtained from
other datasets.

δX =
α− α′

α
(2)

Using this evaluation metric, the deviation in test accuracy
of the model for each dataset can be determined. A higher
value indicates a lower generalisation of the model, and vice
versa. In essence, this metric evaluates the generalisation
achieved by the AVDC model due to the diversity of features
that represent violent actions in a given training dataset.



Fig. 2: Internal Architecture of ConvLSTM

Fig. 3: Process of Model Evaluation

IV. RESULT AND ANALYSIS

In this section, we investigate the potential of our proposed
MC dataset to improve the generalisation of ConvLSTM
models based on VGG16 and VGG19 for violence detection
in reference to the HF [14] and AIRTLab datasets. We analyse
the performance of the models in terms of accuracy, F1 score,
and AUC. Furthermore, we determine the respective δX values
based on the accuracies of the models on different test datasets.

Table II presents the performance of different variants of
the AVDC approach using VGG16+ConvLSTM, trained and
tested with MC, HF, and AIRTLab datasets. The impact of the
MC dataset on the AVDC model’s performance, measured by
δX , is significantly better compared to the HF and AIRTLab
datasets. The overall δX values for the models trained with
the MC, HF, and AIRTLab datasets are 0.2514, 0.3645, and

0.3568, respectively. Therefore, the AVDC model trained with
our proposed MC dataset achieves 29.54% and 31.03% higher
generalisation in terms of handling diversity compared to the
state-of-the-art HF and AIRTLab datasets.

Similarly, Table III illustrates the performance of different
variants of the AVDC approach using VGG19+ConvLSTM,
trained and tested with MC, HF, and AIRTLab datasets. The
δX values obtained for the models are 0.3497, 0.6696, and
0.4647, respectively. These results indicate that the model
trained with our MC dataset achieves an enhanced generalisa-
tion of 47.77% and 24.75% compared to the HF and AIRTLab
datasets, respectively.

Overall, our findings demonstrate that the proposed MC
dataset significantly improves the generalisation capabilities of
VGG16 and VGG19-based ConvLSTM models. These results
provide strong evidence of the effectiveness and novelty of



TABLE II: Performance of VGG16-ConvLSTM

Test Dataset Metric Train Dataset
MC HF AIRTLab

MC
Accuracy 0.7439 0.4589 0.6618

F1-Score 0.814 0.4717 0.7784

AUC 0.6947 0.5039 0.5489

δX - 0.5118 0.2537

HF
Accuracy 0.4533 0.94 0.46

F1-Score 0.6238 0.9396 0.5759

AUC 0.4533 0.94 0.4599

δX 0.3906 - 0.4813

AIRTLab
Accuracy 0.6604 0.7358 0.8868

F1-Score 0.7954 0.8333 0.9143

AUC 0.5 0.6111 0.8738

δX 0.1122 0.2172 -

TABLE III: Performance of VGG19-ConvLSTM

Test Dataset Metric Train Dataset
MC HF AIRTLab

MC
Accuracy 0.7391 0.4541 0.3961

F1-Score 0.8111 0.4593 0.3386

AUC 0.6876 0.5038 0.4739

δX - 0.5169 0.5533

HF
Accuracy 0.433 0.94 0.5533

F1-Score 0.6009 0.9412 0.2117

AUC 0.4333 0.94 0.5533

δX 0.4142 - 0.3761

AIRTLab
Accuracy 0.5283 0.566 0.8868

F1-Score 0.5762 0.6933 0.9142

AUC 0.5484 0.4825 0.8738

δX 0.2852 0.3979 -

our work in creating a diverse dataset specifically designed for
AVDC systems. Our MC dataset outperforms the state-of-the-
art HF and AIRTLab datasets in terms of model generalisation,
validating the significance of our contribution.

V. CONCLUSION

In this paper, we have addressed a crucial and timely
requirement for a diverse and comprehensive dataset for
AVDC systems. We have introduced the MC dataset, which
overcomes the limitations of existing datasets by capturing the
complexity and heterogeneity of real-world violent scenarios.
Our experiments have demonstrated that the MC dataset
surpasses well-known datasets like HF and AIRTLab when
training VGG16 and VGG19-based ConvLSTM models. The
results also indicate that the MC dataset significantly improves
the generalisation capabilities of AVDC models, exhibiting
notable performance in terms of accuracy, F1 score, and

AUC. The diversity of the MC dataset, encompassing various
dimensions such as violence types, environmental contexts,
demographics, and cultural factors, ensures that trained models
can effectively detect a wide range of violent activities in
near-real-world situations. Thus, this work introduces new
possibilities for developing more reliable and effective vio-
lence detection systems by providing an unbiased dataset that
encompasses a broader range of contexts and scenarios. The
utilisation of DL techniques, with the power of the MC dataset,
establishes the foundation for automated vision-based violence
detection, thereby contributing to public safety and addressing
the pressing issue of violence in our society.
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